Şafak yorumlarda söylemiş zaten, uzun süre sonra cevap yazmaya ancak vaktim oldu. Böyle bir tabanın var olduğunun kanıtlanması için bir miktar seçim belitinin kullanılması gerekiyor. Bunun nedeni kabaca şöyle:
- Biraz uğraşla bu uzayın her (Hamel) tabanının $2^{\aleph_0}$ kardinalitesinde (yani gerçel sayılarla aynı kardinalitede) olduğu gösterilebilir. (Bundan bir matkafası sorusu çıkabilir mesela =)
- Bu uzay için bir Hamel tabanı aldığımızda bu tabanın her permütasyonu bu uzay üzerinde bir doğrusal otomorfizma verecektir. Dolayısıyla bu uzaydan kendisine en az $2^{2^{\aleph_0}}$ tane doğrusal otomorfizma var.
- Bir taraftan biliyoruz ki, bu uzay üzerinde $2^{\aleph_0}$ tane sürekli fonksiyon olduğu için yukarıdaki doğrusal fonksiyonlardan bazıları süreksiz olmak zorunda. Öte yandan, ZF+"İki
Leh grubu arasındaki her homomorfizma süreklidir" teorisi tutarlıdır (eğer ZF tutarlı ise). Bunun kanıtı pek kolay değil ancak araştırmak isteyen olursa
şu makalenin ikinci bölümünün bir kısmı okunabilir.
- Demek ki ZF içerisinde böyle bir süreksiz otomorfizma olduğu (ve dolayısıyla bu uzayın bir tabanı olduğu) kanıtlanamaz.
İşin özü şu: Gerçel sayıların
Baire özelliğine sahip olmayan bir altkümesi olduğu sadece ZF içerisinde (hatta ZF+DC içerisinde) kanıtlanamaz. Öte yandan sorudaki uzayın bir Hamel tabanı varsa, bu kullanılarak gerçel sayıların Baire özelliğine sahip olmayan bir altkümesi olduğu kanıtlanabilir.