$f(x)=a_0+a_1x+\dots+a_kx^k$ diyelim.
Durum 1: $f(0)=0$: Bu durumda her $p$ asalı için $f$'nin mod $p$'de bir çözümü vardır tabii ki.
Durum 2: $f(0)=1$: Varsayıma göre $f$ sabit olmadığı için, öyle bir $n$var ki $$|f(n!)|>1$$ olur. $p_1|f(n!)$ olacak şekilde bir asal alalım. Bu durumda $f(n!)\equiv 0(\text{mod})\ p_1$.
İddia: $p_1>n$
İspat: Velev ki $p_1\leq n$. O halde $p_1|n!$, o halde $f(n!)\equiv 1(\text{mod}\ p_1)$ ($a_0=1$ durumundayız), çelişki.
Aynı yöntemle $f$ sabit olmadığı için $$|f(cp_1!)|>1$$ olacak şekilde bir $c$ var. $p_2|f(cp_1!)$ olacak şekilde bir $p_2$ asalı alalım. Bu durumda $f$'nin mod $p_2$'de bir kökü vardır ve $p_2>p_1$ olur. Böylece devam...
Durum 3:$f(0)\neq 0$: Şu fonksiyonu düşünelim: $$g(x)=\frac{f(xf(0))}{f(0)}.$$ Görüldüğü üzere $g(0)=1$. Bu durumda durum 2 uygulanabilir, yani $g$'nin sonsuz tane $p$ asalı için mod $p$'de çözümü vardır. O halde $f(xf(0))$ fonksiyonunun sonsuz tane $p$ asalı için mod $p$'de çözümü vardır. Sonuç olarak $f$'nin sonsuz tane $p$ asalı için mod $p$'de çözümü vardır.
---
Number Field, Marcus, 3. Kısım, 30. Soru, a) Şıkkı