Teknik olarak bir ölçünün Haar olabilmesi için üzerinde tanımlanan nesnenin bir yerel tıkız topolojik grup olması ve tercihen öteleme altında değişmemesi gerekir.
Mesela $dx$ eğer $\mathbb{R}$'yi toplamaya göre topolojik bir grup olarak düşünürsek bir Haar ölçüsüdür.
Bunun yanında $\frac{dx}{x}$ de bir Haar ölçüsüdür ancak grubu değiştirmek gerekir. Bu durumda almamız gereken grup $(0,\infty)$ ve çarpma operasyonudur. Siz yukarıda bu ölçünün çarpa operasyonuna göre değişmez olduğunu göstermişsiniz.