Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
2 beğenilme 0 beğenilmeme
650 kez görüntülendi

$A\in Mat_n(\mathbb{R})$ olsun. $$e^A:=\sum_{i=0}^{\infty}\frac{1}{i!}A^i$$toplamının her zaman yakınsak olduğunu gösterin.

Akademik Matematik kategorisinde (3.7k puan) tarafından  | 650 kez görüntülendi

Yakinsakligi bi norma gore mi yapiyoruz? (operator normu) Bu durumda $||A||=x$ oldugunda $||A^n||\leq x^n$ olur. Dizide de $A$ yerine $x$ yazinca $e^x$ gelir.  Ustten bir sinir var. 

Evet bir norma göre. Burada donlu boyutlu bir uzayda olduğumuz ve taban cisim tam olduğu için herhangi bir norm alınabilir. Ama lisans öğrencileri bunu çözmeye çalışırken matrisleri $\mathbb{R}^{n^2}$ ile eşleyip oradaki normu kullanırlar diye düşündüm.
20,274 soru
21,803 cevap
73,476 yorum
2,428,152 kullanıcı