Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
299 kez görüntülendi

a$x^2$+bx+c >0 olsun örneğin. Kök tablosu oluştururken.Neden a'nın işaretiyle başlıyoruz?

Nereden geldiğini ispatlayabilir misiniz? 

Orta Öğretim Matematik kategorisinde (281 puan) tarafından  | 299 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Bunu ayni tarz bir sorudaki cevabimdan kopyala yapistir yapiyorum:

Genel olarak mantigi basit. Polinomlar icin:

$f(x)=a(x-x_1)(x-x_2)\cdots(x-x_n)(x^2+a_1x+b_1)\cdots(x^2+a_mx+b_m)$ olarak carpanlarina ayrilsin ve $x_1\leq x_2\leq\cdots\leq x_n$ olsun.

$(x^2+a_1x+b_1)\cdots(x^2+a_mx+b_m)$ her zaman pozitiftir. Cunku hic koku yok ve surekli. Bir tane pozitif deger aldigini gostersek yeterli. Bunun icin sonsuza giderken limiti sonsuz diyebiliriz ya da $b_i$'lerin pozitif olmasi gerektigini bilerek $f(0)$ degerinin pozitif oldugunu soyleyebiliriz. 

Demek ki isaret icin son kismi atarak $g(x)=a(x-x_1)(x-x_2)\cdots(x-x_n)$ polinomunu inceleyebiliriz. 

Burada $a>0$ secelim. Eger $a<0$ olursa tum isaretler yerdegistirir. Bu nedenle sadece $a>0$ icin yapsak yeterli.

Mantik su:  Eger $t<x_1$ demek ki $(t-x_i)$'lerin hepsi negatif olacak demek ki isaret $(-1)^n$ olacak. Eger $t>x_n$ ise $(t-x_i)$'lerin hepsi pozitif olacak isaret de pozitif olacak.

Kisacasi saymamiz gereken $t$ sayisinin sol tarafinda (kat sayisi ile birlikte) kac kok var. Eger $t$'nin solunda $u$ tane kok varsa isaret $(-1)^u$ olacak.

Bu durumda eger tek uslu bir kok uzerinden atlarsak $(-1)^{u+tek}=-(-1)^u$ olacagindan isaret degistirecek ve cift uslu bir kokun uzerinden atlarsak $(-1)^{u+cift}=(-1)^u$ olacagindan isaret degismeyecek.

Eger polinom bolmesi olsaydi yine solundaki kokleri sayacaktik. Daha da genellestirilebilir. Fakat mantigini anlamak icin bu kadari yeterli diye dusunuyorum.

(25.5k puan) tarafından 
tarafından seçilmiş

Teşekkürler :)

20,274 soru
21,803 cevap
73,476 yorum
2,428,598 kullanıcı