$(\mathbb{N},\leq_{\mathbb{N}})$ ikilisinin bir iyi sıralanmış sistem olduğunu bildiğimize göre $\mathbb{Q}$ rasyonel sayılar kümesi ve $f:\mathbb{N}\to \mathbb{Q}$ bijektif bir fonksiyon olmak üzere
$$\preceq_{\mathbb{Q}}:=\{(x,y)|f^{-1}(x)\leq_{\mathbb{N}}f^{-1}(y)\}\subseteq \mathbb{Q}^2$$ bağıntısı bir iyi sıralama bağıntısıdır. Dolayısıyla sayılabilir kümeler üzerinde iyi sıralama bağıntısı yazmak zor değildir. Buradaki linke de bakmak faydalı olabilir.