2 tane cevabı var.
$\underline{1.CEVAP}$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ ise
hertarafı a ile çarpalım
$a.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a.1$
$\frac{a}{b}+\frac{a}{c}=a-1$ olur
bunu c ve b için de uygularsak
$\frac{b}{a}+\frac{b}{c}=b-1$
$\frac{c}{a}+\frac{c}{b}=c-1$
---------------------------------------------
$A.O.\geq G.O.$ dan
$\frac{a}{b}+\frac{a}{c}\geq 2a.\sqrt{\frac{1}{bc}}$
$\frac{b}{a}+\frac{b}{c}\geq 2b.\sqrt{\frac{1}{ac}}$
$\frac{c}{b}+\frac{c}{a}\geq 2c.\sqrt{\frac{1}{ab}}$
Yani
$a-1\geq 2a.\sqrt{\frac{1}{bc}}$
$b-1\geq 2b.\sqrt{\frac{1}{ac}}$
$c-1\geq 2c.\sqrt{\frac{1}{ab}}$
yani
$(a-1)(b-1)(c-1)\geq 2^3\frac{a.b.c}{\sqrt{ab.ac.bc}}$
olur ispatlanır $\Box$
------------------------------------------------------------------------------------------------------------------------------
$\underline{2.CEVAP}$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ oldugundan
$abc=ab+ac+bc$ gelir
$(a-1)(b-1)(c-1)=abc+(a+b+c)-(ab+bc+ac)-1$ gelir yukardaki ifadeyi kullanarak
$a+b+c-1\geq 8$$\longrightarrow$$a+b+c\geq 9$ ifadesini kanıtlamamız gerektiği çıkar
$(a+b+c)\geq 3.\sqrt{a.b.c}$ olur
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 3.\sqrt{\frac{1}{a.b.c}}$
taraf tarafa çarparsak
$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c)\geq 3.\sqrt{a.b.c}.3.\sqrt{\frac{1}{a.b.c}}$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ oldugundan
$1.(a+b+c)\geq 9.1$
ispatlanmış olur $\Box$