Bu matematikçilerin 'tembel' bir yazım kullanmasından kaynaklı. Belirsiz diye geçen ifadeler reel fonksiyonların oranlarının limitleri ile ilgili, örneğin ikisi de durmadan küçülen iki fonksiyonun oranı, fonksiyonların ne olduğuna göre farklı değerler alabilir.
$lim_{x\mapsto 0^{+}}\frac{x}{x}=1$
$lim_{x\mapsto 0^{+}}\frac{x^2}{x}=0$
$lim_{x\mapsto 0^{+}}\frac{x}{x^2}=+\infty$
O yüzden '$\frac{0}{0}$ tipindeki belirsizlikler'den bahsederiz. Sayısal değerini hesaplamak için kesirin bu formda olduğu bilgisi yetersiz, daha derin bir inceleme yapmak gerek. Ancak fonksiyonların ne olduğuna dikkat ettikten sonra bu limiti hesaplayabiliriz, o yüzden başta bir belirsizlik var. Bu $0$ sayısını $0$'a bölersek ne olur gibi aritmetik ile ilgili bir soru değil.
Tanımsızlık ise çok basit bir kavram, daha önceden tanımlanmamış şeylere tanımsız diyoruz. $\delta$ sembolünü gördüğünüzde hangi kavramın yerine geçtiğini anlamanız için önce size bu yazımla ne kast ettiğimi söylemem, yani bu sembolü tanımlamam gerekir.
Aritmetikte $\frac{0}{0}$ da, $\frac{1}{0}$ da tanımsızdır, ikisi arasında bir fark yok.