$[AB]\bot[BC]$ ve $m(A)=15^o$ olmak üzere bir $ABC$ üçgeni çizelim. $|BC|=1$ olsun. $|AB|=2+\sqrt{3}$ olduğunu ispatlamıştık. Bu durumda $|AC|^2=1^2+(2+\sqrt{3})^2 \Rightarrow |AC|=\sqrt{2}+\sqrt{6}$ olur. Eğer $H \in [AC]$ ve $[HB] \bot [AC]$ olmak üzere bir $H$ noktası tanımlarsak $A(ABC)=\frac{|AB|.|BC|}{2}=\frac{|AC|.|BH|}{2}=\frac{2+\sqrt{3}}{2}$ olur. $|AC|=\sqrt{2}+\sqrt{6}$ olduğundan $(\sqrt{2}+\sqrt{6}).|BH|=2+\sqrt{3}$ olacaktır. Bu durumda $|BH|=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{6}}=\frac{\sqrt{2}+\sqrt{6}}{4}$ olur. O halde $\frac{|AC|}{|BH|}=\frac{\sqrt{2}+\sqrt{6}}{\frac{\sqrt{2}+\sqrt{6}}{4}}=4$ olmalıdır.