Fonksiyonumuzun tanim kumesine $T \subseteq \mathbb{R}^3$ diyecek olursak ve bu $f: T \to \mathbb{R}$ fonksiyonunu
$$f(x,y,z) = \frac{1}{\sqrt{4 - x^2 - y^2 -z^2}}$$
olarak tanimlarsak, $T$ en fazla
$$T = \{ (x,y,z) : x^2 + y^2 + z^2 < 4\}$$
kumesi olabilir. Cunku,
-
bu $T$ kumesindeki her eleman icin fonksiyonumuz tanimlanabilir.
Ama
-
$x^2 + y^2+z^2 = 4$ olacak sekilde bir $(x,y,z)$ uclusu aldigimizda payda sifir olur. Yani fonksiyonumuz reel sayilara giden bir fonksiyon olarak tanimlanamaz.
-
$x^2 + y^2+z^2 > 4$ olacak sekilde bir $(x,y,z)$ uclusu aldigimizda, $4 - x^2 -y^2 -z^2$ negatif olur. Dolayisiyla $\sqrt{4 - x^2 -y^2 -z^2}$ ifadesi bir reel sayi tanimlamaz.
Demek ki en genis tanim kumemiz $T = \{ (x,y,z) : x^2 + y^2 + z^2 < 4\}$ olur. Geometrik olarak bakacak olursak, bu kume $\mathbb{R}^3$'te merkezi orijin olan ve yaricapi $2$ olan acik topa (acik yuvara) denk gelmektedir.