$K \subseteq Y$ açık bir küme olsun. Amacımız $f^{-1}(Y)$ kümesinin $X$'te açık olduğunu göstermek.
$K \in €$ olsun. O zaman $Y\setminus K$ kapalıdır yani $Y\setminus K = \overline{ Y\setminus K}$.
$f^{-1}(Y\setminus K) \subseteq X \implies f(\overline{f^{-1}(Y\setminus K}) \subseteq \overline{f(f^{-1}(Y\setminus K)}$ olur varsayımımızdan dolayı.
$\implies f(\overline{X \setminus f^{-1}(K)})=f(\overline{f^{-1}(Y\setminus K)}) \subseteq \overline{f(f^{-1}(Y\setminus K)}= \overline{Y \setminus K} =Y\setminus K$
elde ederiz çünkü biliyoruz ki $K$, € topolojisinin bir elemanı yani açık bir küme, tümleyeni kapalı olduğundan tümleyeni, tümleyeninin kapanışına eşit.
Son eşitlikte $ f(\overline{X \setminus f^{-1}(K)})=Y\setminus K$ her iki tarafa da $f^{-1}$ uygularsak
$\overline{X \setminus f^{-1}(K)} \subseteq f^{-1}(Y\setminus K)=X\setminus f^{-1}(K)$ elde ederiz ki bu $X\setminus f^{-1}(K)$ £ topolojisinde kapalı demektir. O zaman tümleyeni $f^{-1}(K)$ açıktır, $f^{-1}(K) \in$ £.