$a_0$ sifir olmayan gercel bir sayi ve $$\lim\limits_{n\to\infty}\left(\frac{6n+5}{7n+1}\right)=\lim\limits_{n\to\infty}\left(\frac{6+5/n}{7+1/n}\right)=\frac67$$oldugundan$$\lim\limits_{n \to\infty} a_n=\lim\limits_{n\to\infty}a_0\left(\frac{6n+5}{7n+1}\right)^{n-1}=0$$ olur.