Sol taraftan başlayalım, $$[sin(a/2)+sin(b/2)]+[sin(c/2)-sin(\pi/2)]=$$
$$2sin(\frac{a/2+b/2}{2}).cos(\frac{a/2-b/2}{2})+2sin(\frac{c/2-\pi/2}{2}).cos(\frac{c/2+\pi/2}{2})=$$ $$2sin(\frac{\pi/2-c/2}{2}).cos(\frac{a/2-b/2}{2})+2sin(\frac{c/2-\pi/2}{2}).cos(\frac{c/2+\pi/2}{2})=$$
$$2sin(\frac{\pi/2-c/2}{2}).\left[cos(\frac{a/2-b/2}{2})-cos(\frac{c/2+\pi/2}{2})\right]=$$
$$2sin(\frac{\pi/2-c/2}{2}).\left[-2.sin(\frac{a/2-b/2+c/2+\pi/2}{4}).sin(\frac{a/2-b/2-c/2-\pi/2}{4})\right]=$$
$$-4sin(\frac{\pi/2-c/2}{2}).\left[sin(\frac{\pi-b}{4}).sin(\frac{-b-c}{4})\right]=$$
$$4sin(\frac{\pi-c}{4}).sin(\frac{\pi-b}{4}).sin(\frac{b+c}{4})=4sin(\frac{\pi-c}{4}).sin(\frac{\pi-b}{4}).sin(\frac{\pi-a}{4})$$ olacaktır.
DİKKAT İşlem hatası içerebilir.