$$1-\sin x=t^2\Rightarrow \sin x=1-t^2\Rightarrow \cos x=\sqrt{2t^2-t^4}$$
$$1-\sin x=t^2\Rightarrow-\cos x dx=2tdt\Rightarrow dx=\frac{2t}{\sqrt{t^4-2t^2}}dt$$
$$\int\frac{1-t^2}{t}\cdot\frac{2t}{\sqrt{t^4-2t^2}}dt=2\int\frac{1-t^2}{\sqrt{t^4-2t^2}}dt$$
$$=$$
$$2\int\frac{1}{\sqrt{t^4-2t^2}}dt-2\int\frac{t}{\sqrt{t^2-2t}}dt$$
$$=$$
$$2\int t^{-1}(t^2-2)^{-\frac{1}{2}}dt-2\int t(t^2-2t)^{-\frac{1}{2}}dt$$
Buradan sonra binom integrali.