$\mathbb{R}[x]$ deki indirgenemez ($\mathbb{R}[x]$ tek tip çarpanlara ayrılabilme bölgesi olduğundan asal) polinomların en çok ikinci derece olduğunu şöyle gösterebiliriz. $P(x)$ in derecesi en az 3 olsun. $a\in\mathbb{C},\ P(x)$ in kompleks bir kökü olsun. $a\in\mathbb{R}$ ise $x-a,\ P(x)$ i böler ve bölüm polinomu da (en az 2. derecedir ve) $\mathbb{R}[x]$ dedir. $a\notin\mathbb{R}$ ise $\bar{a}$ de $P(x)$ in bir köküdür ve $a\neq\bar{a}$ dır. Buradan $(x-a)(x-\bar{a})\in \mathbb{R}[x]$ dir ve $P(x)$ i böler ve bölüm polinomu da (en az 1. derecedir ve) $\mathbb{R}[x]$ dedir. Dolayısıyla, $\mathbb{R}[x]$ de derecesi 2 den büyük indirgenemez polinom yoktur. Her cisimde, ikinci (ve üçüncü) derece polinomların indirgenemez olması için gerek ve yeter koşul polinomun (o cisimde) kökü olmaması olduğu aşikardır.
(Not: bunun sonucu olarak (teorik olarak!) tüm rasyonel fonksiyonları, (basit kesirlere ayrıştırma kullanarak) elemanter fonksiyonlar ile integralleyebiliyoruz)