$\sum _{k=1}^{9}\log \left( \dfrac {k} {k+1}\right) $ işleminin sonucu ?
$\displaystyle\sum_{k=1}^{9} \log\left(\dfrac{k}{k+1}\right)=log(\dfrac{1}{2})+log(\dfrac{2}{3})+log(\dfrac{3}{4})+....log(\dfrac{9}{10})=\log\left(\dfrac{1.2.3.4.......9}{2.3.4.5.6....10}\right)=\boxed{\boxed{\boxed{\boxed{-1}}}}$
$$\sum_{k=1}^{n}\log \left(\frac{k}{k+1}\right)$$$$=$$$$\sum_{k=1}^{n} (\log k-\log (k+1))$$
$$=$$
$$(\log 1-\log 2)+(\log 2-\log 3)+\ldots +(\log (n-1)-\log n)$$
$$\log 1-\log n$$
$$\log \frac1n$$
$$-\log n$$
teşekkürler hocam :)