$\begin{align*} & A^{2}=\left[ \begin{matrix} -1& 3\\ -1& 2\end{matrix} \right] \cdot \left[ \begin{matrix} -1& 3\\ -1& 2\end{matrix} \right] =\left[ \begin{matrix} -2& 3\\ -1& 1\end{matrix} \right] \\ & \equiv -\left[ \begin{matrix} 2& -3\\ 1& -1\end{matrix} \right] \end{align*}$
- parantezine alınca A matrisinin tersi haline gelmis olur.
$A\cdot A^{-1}=I$ ozelliginden:
$-A^{2}.A=-A^{3}=-I$ ve $\left( -A^{3}\right) ^{4}=I$