Tanım: $(X_i,\tau_i)_{i \in I}$ topolojik uzaylar ve $\mathcal{A}_i:=\left\{\pi_i^{-1}[U_{ij}]\Big{|}U_{ij}\in\tau_i\right\}$ olmak üzere $$\mathcal{A}:=\bigcup\mathcal{A}_i$$ ailesinin doğurduğu topolojiye $$X=\prod_{i \in I} X_i$$ kümesi üzerindeki çarpım topolojisi denir. $X$ kümesi üzerinde çarpım topolojisi alınmak suretiyle elde edilen uzaya da çarpım uzayı denir.
Tanım: $(X_{i},\tau_{i})_{i\in I}$ topolojik uzaylar olmak üzere
$$\mathcal{B}:=\left\{\prod_{i\in I}U_{ij}\Big{|}U_{ij}\in\tau_{i}\right\}$$ ailesi, boştan farklı (neden?)
$$X=\prod_{i\in I} X_{i}$$ kümesi üzerindeki bir topoloji için bazdır.(Neden?) Bu $$\mathcal{B}$$ ailesinin doğurduğu topolojiye $$X=\prod_{i\in I} X_{i}$$ kümesi üzerindeki kutu (box) topoloji denir.
Son olarak $$|I|<\aleph_0$$ ise $X$ kümesi üzerindeki çarpım topolojisi ile kutu topolojisi çakışır. Genel olarak kutu topolojisinin açıklarının çarpım topolojisinin açıklarından daha çok yani kutu topolojisinin çarpım topolojisinden daha ince olduğunu görmek zor olmasa gerek.