$n\times n$ tipinde bir $A$ matrisinin determinantı;
$det(A)=\displaystyle\sum_{\sigma \in S_{n}}sgn(\sigma) a_{1\sigma(1)}a_{2\sigma(2)}\ldots a_{n\sigma(n)}$
ile tanımlanmakta.(Burada toplam $\{1,2,\ldots, n\}$ kümesinin bütün permütasyonları üzerinden yapılmakta).
Sorum: Peki bu tanım nereden gelmektedir?