$\lim\limits_{x \to -\infty}f(x)=0$ olduğu grafikte gözüküyor. $A$ seçenegi doğrudur.
$\lim\limits_{x \to 3^-}f(x)=\lim\limits_{x \to 3^+}f(x)=f(3)=0$ olduğundan,fonksiyonun bu noktada limiti var ve süreklidir.Yani $\lim\limits_{x \to 3}f(x)=0$ doğrudur.$B$ seçeneği doğrudur.
$\lim\limits_{x \to 2^-}f(x)=\lim\limits_{x \to 2^+}f(x)=-\infty\neq f(2)$ olduğundan fonsiyonun $x=2$ de limiti vardır ancak $x=2$ de süreksizdir. $\lim\limits_{x \to 2}f(x)=-\infty$ yazılışı doğru kabul edilmektedir.Yani $C$ seçeneği doğrudur.
$\lim\limits_{x \to \infty}f(x)=1$ olduğu grafikten görünmektedir.$D$ seçeneği doğrudur.
$\lim\limits_{x \to -1^-}f(x)=1,\quad \lim\limits_{x \to -1^+}f(x)=0$ olduğundan sağ ve sol limitler farklı olup bu noktada limit yoktur ve fonksiyon süreksizdir. Dolayısıyla $E$ seçeneği yanlıştır.