Başka yöntemler bulayım dedim ilk olarak kısmiyi denedim kısmide her integrasyonu tamamladım ama geriye kalan $\displaystyle\int \dfrac{e^x.dx}{1+cosx}$ teriminin entegrasyonunu beceremedim.
Farklı bir çözüm bulurum diye mse de woframda falan baya aradım ama bulamadım, geriye ilk akla gelen çözüm kaldı "malesef".
$\displaystyle\int e^x \dfrac{1+\sin x}{1+\cos x} dx=\displaystyle\int e^x \left(\dfrac{1+2sin(x/2).cos(x/2)}{2cos^2(x/2)} \right)dx$
$=\Huge\displaystyle\int$ $ \underbrace{e^x \left(\underbrace{\dfrac{1}{2}.sec^2(x/2)}_{(tan(x/2))'} +tan(x/2)\right)}_{e^x.a+e^x.a'}dx$
yani integral $(e^x.a)'=e^x.a+e^x.a'$ gibiymiş dolayısıyla,
$\boxed{\boxed{\displaystyle\int e^x \dfrac{1+\sin x}{1+\cos x} dx=\displaystyle\int(e^x.tan(x/2))' dx=e^x.tan(x/2)+C}}$ olur