$1+\cos x \ge 0$ oldugundan $1+\cos x +e^x \ge e^x$ olur. Bu da bize ($|\sin x| \le1$ oldugundan) $$\left|\frac{\sin x}{1+\cos x+e^x}\right| =\frac{|\sin x|}{1+\cos x+e^x}\le \frac{1}{1+\cos x+e^x}\le \frac{1}{e^x}=e^{-x}$$ esitsizligini verir. $$\int_0^\infty e^{-x} dx$$ integrali hesaplanabilir (egzersiz) ve yakinsak olur. Bu da bize karsilastirma testi ile integralimizin mutlak yakinsak oldugunu verir.