Eğer $AB$ doğrusu çembere teğet ise $OA\bot AB$ olup $|OA=|OC|=|AB|$ olduğundan $OAB$ ikizkenar dik üçgendir. $|AB|=\sqrt{(1-3)^2+(1-4)^2}=\sqrt{13}$ olur. Buradan $|OB|=\sqrt2.\sqrt{13}=\sqrt{26}$ olur. Merkezin koordinatları $(a,b)$ olsun. O zaman şu eşitlikleri yazabiliriz.
$|OA|=(a-1)^2+(b-1)^2=13 \qquad |OB|=(a-3)^2+(b-4)^2=26$ bu ikisinden $ a,b$ değerleri çözülürse, $(a,b)=(4,-1),(a,b)=(-2,3)$ olur.