2009! olmasinin bi önemi yok aslinda. Şöyle düşün.
$|x-2|=a$ olsun.
$x-2=a$ ve $x-2=-a$ olur. O halde x degerleri, $x_1=a+2$ ve $x_2=-a+2$. Toplamlari da 4.
Grafikleri incelersen daha rahat görebilirsin ama anlatmaya calisayim. Bu ifadenin grafigini düsündügümüzde V seklinde olur x eks. kestigi nokta 2. Simetri ekseni x=2 dogrusudur ve kökler bu dogruya esit uzakliktadir, yani birbirinin simetrigidir. Ve bunu $y=2009!$ ( ya da herhangi bi sayi) ile kesiştirirsek 2 noktada keser. Bu degerler x+a ve x-a olur.Topladigimiz zaman bunlar hep gidecek.
Yani bunun icin degil ama birden fazla mutlak degerin ic ice oldugu durumlarda simetri eksenini ve kac koku olacagini dusun. Kac kök varsa o kadar katini aliyorsun.
Bunu uyarlayalim. Simetri ekseni 2 den geciyor. Ben bunu y=2009! Ile kesistirip yatay bi sekilde dogruyu cizersem iki noktada keser. Yani iki kökü var. O zaman kisaca 2.2=4 diyebilirim.