İstenen ifade :
$\displaystyle\int x.cos^2xdx$ burada ;
$cos^2x=u$
ve
$x.dx=dk$ dönüşümü yapalım,
$\displaystyle\int x.cos^2xdx=\dfrac{cos^2x.x^2}{2} +\underbrace{\displaystyle\int \dfrac{2.sinx.cosx.x^2}{2}dx}_{A/2}$ olduguna göre;
ve
$\left[ \dfrac{cos^2x.x^2}{2} \right]^\pi_0=\pi^2/2$
$\boxed{\boxed{\displaystyle\int^\pi_0 x.cos^2xdx=\dfrac{\pi^2+A}{2}}}$