$$\displaystyle\int _{1}^{e}\dfrac {\sqrt {\ln x}} {x} dx$$ integralinin değerini bulunuz.
Lutfen sorunuza kelime/cumle eklemekten cekinmeyiniz.
İpucu: $$t=\ln x$$ dönüşümü yaparsan iş biter.
$lnx=u$ dersek $\dfrac{1}{x}.dx=du$
Sınurlarıda değiştirirsek
$x=e$ ise $u=1$
$x=1$ ise $u=0$
Buldukklarımızı yerine yazarsak,
$\displaystyle\int_0^1 \sqrt {u} .du$
$=\dfrac{2}{3}. u^\dfrac{3}{2} |_0^1$
$=\dfrac{2}{3}$