Şuraya bir cevapımsı bırakayım da, çünkü mantığıma yatmayan bir şeyler var. Onların düzeltilmesi lazım, sonra cevaba çeviririm.
Öncelikle $Q, i$ fonksiyonlarını tanımlamıştık, ama ettekraru ahsen velev kane yüzseksen demişler, bir kez daha tanımlayalım :) $Q$, $t$ anında kapasitörün depoladığı yükü, $i$ $t$ anında devreden geçen akımı veren fonksiyonlar olsun.
$\frac{\Delta Q}{\Delta t}=i$ formülünü verelim, lakin dikkat edilmesi gereken bir durum var. Bu $\Delta Q$ devrenin üzerinden geçen yük, bize gereken kapasitördeki yük değişimi olduğundan ifadenin başına mutlu bir $-$ işareti koyalım :)
$-\frac{\Delta Q}{\Delta t}=i$ olduğuna göre gönül rahatlığıyla $-Q'(t)=i(t)$ diyebiliriz. Şimdi, $-L\frac{\Delta i}{\Delta t}=\epsilon(t)$ formülünü ele alalım. Bunda da $-L.i'(t)=\epsilon (t)$ dersek yanlış olmaz.
Hepsini birleştirelim ve bu sonuç burada dursun:
$L.Q''(t)=-L.i'(t)=\epsilon (t)$
Gelelim soruda da bahsettiğim gerilim denklemine. Özindüksiyon gerilimi ile akımın dirençle çarpımından gelen gerilim, kapasitörün gerilimine eşittir. Daha basit ifadelerle $\frac{Q(t)}{C}=i(t).R+\epsilon (t)$ diyebiliriz.
$Q(t)=y$, $L=a$, $-R=b$, $\frac{-1}{C}=c$ dersek,
$ay''+by'+cy=0$ olur. Bu diferansiyel denklemin çözümünü yapalım. Denklemin karakteristik polünomunu yazalım
$a \gamma^2+b\gamma+c=0$
Bu denklemin kökleri $\gamma_1$ ve $\gamma_2$ olsun. Bu durumda diferansiyel denklemin çözümü reel iki kök için;
$y=c_1.e^{\gamma_1.x}+c_2.e^{\gamma_2.x}=c_1.e^{\frac{-b+\sqrt{b^2-4ac}}{2a}.x}+c_2.e^{\frac{-b-\sqrt{b^2-4ac}}{2a}.x}$'tir. Köklerin reel olduğu kesin, çünkü başlangıçta verdiğimiz değerlerden dolayı $(-a),b,c \in \mathbb{R}^-$ olduğundan $b^2-4ac>0$ olur.
Gelelim $c_1$ ve $c_2$'nin bulunmasına... Bu değerleri bulabilmemiz için, $y$ fonksiyonunun iki kesin değerine sahip olmalıyız. $y(0)=Q_0$ ($Q_0$ başlangıç yükü) ve $y'(0)=0$ olduğunu biliyoruz.
$y=c_1.e^{\frac{-b+\sqrt{b^2-4ac}}{2a}.x}+c_2.e^{\frac{-b-\sqrt{b^2-4ac}}{2a}.x}$ olduğundan
$y(0)=c_1+c_2=Q_0$
$y'=c_1.\frac{-b+\sqrt{b^2-4ac}}{2a}.e^{\frac{-b+\sqrt{b^2-4ac}}{2a}.x}+c_2.\frac{-b-\sqrt{b^2-4ac}}{2a}.e^{\frac{-b-\sqrt{b^2-4ac}}{2a}.x}$
$y'(0)=c_1.\frac{-b+\sqrt{b^2-4ac}}{2a}+c_2.\frac{-b-\sqrt{b^2-4ac}}{2a}=0$
Bu iki denklemi çözersek $c_1=Q_0.\frac{b+\sqrt{b^2-4ac}}{2\sqrt{b^2-4ac}}$, $c_2=Q_0.\frac{-b+\sqrt{b^2-4ac}}{2\sqrt{b^2-4ac}}$ buluruz. Denklemde yerine yazarsak
$y'=Q_0.\frac{b+\sqrt{b^2-4ac}}{2\sqrt{b^2-4ac}}.\frac{-b+\sqrt{b^2-4ac}}{2a}.e^{\frac{-b+\sqrt{b^2-4ac}}{2a}.x} \\+Q_0.\frac{-b+\sqrt{b^2-4ac}}{2\sqrt{b^2-4ac}}.\frac{-b-\sqrt{b^2-4ac}}{2a}.e^{\frac{-b-\sqrt{b^2-4ac}}{2a}.x}$ buluruz. Düzenlersek
$y'=Q_0.\frac{c}{\sqrt{b^2-4ac}}(e^{\frac{-b-\sqrt{b^2-4ac}}{2a}.x}-e^{\frac{-b+\sqrt{b^2-4ac}}{2a}.x})$ olur.
$i(t)=-y'$, $L=a$, $-R=b$, $\frac{-1}{C}=c$ olduğundan
$i(t)=\frac{Q_0}{C.\sqrt{R^2+4\frac{L}{C}}}.(e^{\frac{R-\sqrt{R^2+4\frac{L}{C}}}{2L}}-e^{\frac{R+\sqrt{R^2+4\frac{L}{C}}}{2L}})$ bulunur.
Her ne kadar bu bir çözüm gibi görünse de aslında bir çözüm değil. Çünkü akım negatif çıkıyor. Hem de eğer zamanı sonsuza ıraksatırsak, akım da eksi sonsuza doğru alıp başını gidiyor, halbuki sıfıra yaklaşmalı ama asla kesmemeli.
Siz değerli hocalarımızdan öğrenmek istediğim çözümde nerede hata yaptığım. Cümleten kolay gelsin :)