$x^2-21x-5a+9=0$ denkleminin kökleri arasında $x_1=5x_2+3$ bağıntısı olduğuna göre $a$ kaçtır?
$x_1+x_2=21$ ve $x_1=5x_2+3$ olduğuna göre $x_1=...$ çıkar. Bunu denklemde yerine yazarsanız $a=...$ bulunur.
$x_1+x_2=\frac{-(-21)}{1}=21$ ve $x_1=5x_2+3$ olduğuna göre $6x_2+3=21$ buradan da $x_2=3$ ve $x_1=18$ bulunur. $3.18=54=-5a+9$ olduğuna göre $a=-9$ bulunur.