$\displaystyle\lim _{\left( x,y\right) \rightarrow \left( 0,0\right) }\dfrac {2\sin x\sin y} {x^{2}+y^{2}}=\lim _{\left( x,y\right) \rightarrow \left( 0,0\right) }2\dfrac {\sin x}x\dfrac {\sin y}y\dfrac{xy} {x^{2}+y^{2}}$
olur. $\displaystyle\lim_{(x,y)\to(0,0}\frac{xy}{x^2+y^2}$ nin var olmadığının gösterilişi standarttır ve pek çok yerde (örneğin https://www.youtube.com/watch?v=fgnZ6dvMTiQ&list=PL6oT6DRbvHKmwcE7-RVy5tembBKoOzjaF&index=4 de) vardır.
$\displaystyle\lim _{\left( x,y\right) \rightarrow \left( 0,0\right) }\dfrac {\sin x}x\dfrac {\sin y}y=1(\neq0\textrm{ olması önemli}))$ (göstermesi kolay) oluşu ile birlikte verilen limitin var olmadığı sonucuna varılır.