$x=(x_1, \dots, x_N)$ ve $y=(y_1, \dots, y_N)$ ve AO-GO eşitsizliğiyle uyumlu olması için $x_i, y_i\geq 0$ olsun. Bu durumda CS eşitsizliği, $$\left(\sum_{i=1}^N x_iy_i\right)^2\leq \sum_{i=1}^N x_i^2\sum_{i=1}^N y_i^2$$ ile verilir. Şimdi, $y_i=1$ olsun. Böylece, $$\left(\sum_{i=1}^N x_i\right)^2\leq N\sum_{i=1}^N x_i^2$$ olacaktır. Eşitsizliğin sol tarafı $N\times \mbox{AO}$'ya eşittir. Şimdi, mutlak değeri kaldırmak sûretiyle, ayrıca $\mbox{AO}\geq \mbox{GO}$ meşhûr AO-GO eşitsizliğini hatırlatarak, $$\left(\prod_{i=1}^N x_i\right)^{\frac{1}{N}}\leq \frac{1}{N}\sum_{i=1}^N x_i \leq \sqrt{ \frac{1}{N}\sum_{i=1}^N x_i^2}$$ yazılabilir.