$\frac{z_1^2}{z_2z_3}+\frac{z_2^2}{z_1z_3}+\frac{z_3^2}{z_1z_2}=\frac{z_1^3+z_2^3+z_3^3}{z_1z_2z_3}=-1$ eşitliğini yazıp bir kenara koyalım ve devam edelim.
$\frac{(z_1+z_2+z_3)^3}{z_1z_2z_3}=\frac{z_1^3+z_2^3+z_3^3+3(z_1^2z_2+z_1^2z_3+z_1z_2^2+z_2^2z_3+z_1z_3^2+z_2z_3^2)+6(z_1z_2z_3)}{z_1z_2z_3}\\=5+3\left(\frac{z_1}{z_2}+\frac{z_1}{z_3}+\frac{z_2}{z_1}+\frac{z_2}{z_3}+\frac{z_3}{z_1}+\frac{z_3}{z_2}\right)$ olarak düzenleyelim. Eğer
$z_1=cis\alpha\\z_2=cis\beta\\z_3=cis\theta$
dersek yukarıdaki eşitliği
$5+cos(\alpha-\beta)+i.sin(\alpha-\beta)+cos(\alpha-\theta)+i.sin(\alpha-\theta)+cos(\beta-\theta)+i.sin(\beta-\theta)\\+cos(-\alpha+\beta)+i.sin(-\alpha+\beta)+cos(-\alpha+\theta)+i.sin(-\alpha+\theta)+cos(-\beta+\theta)+i.sin(-\beta+\theta)\\=5+6(cos(\alpha-\beta)+cos(\alpha-\theta)+cos(\beta-\theta))$ olara yazabiliriz.
Bu durumda linkteki soruya bağlı olarak (talep olursa çözümünü yazarım)
$-4\leq5+6(cos(\alpha-\beta)+cos(\alpha-\theta)+cos(\beta-\theta))=\frac{(z_1+z_2+z_3)^3}{z_1z_2z_3}\leq23$ olur.
$|z_1|=|z_2|=|z_3|=1$ olduğundan $|z_1z_2z_3|=1$ olmalıdır. Yani $\left|\frac{(z_1+z_2+z_3)^3}{z_1z_2z_3}\right|=|(z_1+z_2+z_3)^3|$ diyebiliriz. Yukarıki eşitsizlikten $0\leq|(z_1+z_2+z_3)|\leq\sqrt[3]{23} $ kapalı aralığını buluruz.