Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
216 kez görüntülendi

f: R - {-1,0} $-$> R olmak üzere,

f($x$)= 1 $/$ $x^2$ + $x$ 

olduğuna göre, f(1)+f(2)+f(3)... +f(9) ifadesinin değeri kaçtır?


Takıldığım nokta: Daha önceden bu tip sorunun çarpmalı tipiyle karşılaşmıştım. Toplamalı olanı  hakkında nasıl bir yol izleyeceğimi bilemedim, ayrıca azalış miktarlarının düzgün olmaması da kafamı karıştırdı


Orta Öğretim Matematik kategorisinde (1.1k puan) tarafından 
tarafından düzenlendi | 216 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

$f(x)=\frac{1}{x}-\frac{1}{x+1}$ olduğuna göre

$f(1)=\frac{1}{1}-\frac{1}{2}$

$f(2)=\frac{1}{2}-\frac{1}{3}$

..

$f(9)=\frac{1}{9}-\frac{1}{10}$ hepsini toplarsak.

$f(1)+f(2)+f(3)... +f(9)=\frac{1}{1}-\frac{1}{10}$ gelir.


(11.1k puan) tarafından 
tarafından seçilmiş
20,275 soru
21,803 cevap
73,481 yorum
2,429,195 kullanıcı