Surekli bir fonksiyonu her parcada monoton olacak sekilde sonlu parcaya ayirabilir miyiz?
$f$ fonksiyonu $[a,b]$ araliginda surekli olsun. Oyle bir $n$ pozitif tam sayisi ve $a=x_0<x_1<x_2<\cdots<x_n=b$ noktalari bulabilir miyiz ki, $f$ fonksiyonunun her $1\le i \le n$ icin $[x_{i-1},x_i]$ araligina kisitlanisi monoton olsun.