$a,b,c\in R,a\neq0$ olmak üzere $ax^2+bx+c=0$ ikinci dereceden üç terimlinin kökleri $x_1,x_2$ ise $x_1.x_2=\frac ca $ olduğunu biliyoruz. Verilen denklem için $x_1.x_2=\frac{m^2-m+2}{m+1}$ olup bunun en büyük olması $(x_1.x_2)'=(\frac{m^2-m+2}{m+1})'=0$ koşulunu sağlayan $m$ değerlerine bağlıdır.
$\frac{(2m-1)(m+1)-(m^2-m+2)}{(m+1)^2}=0\Rightarrow m^2+2m-3=0\Rightarrow m_1=1,m_2=-3$ olur.
$m_1=1$ için kökler çarpımı $1$, $m_2=-3$ için kökler çarpımı $-7$ olduğu için $m=1$ olmalıdır.