(tanım kümesinin $\mathbb{R}$ nin en geniş alt kümesi olduğunu varsayarsak)Türev kullanmadan (bu fonksiyonun) görüntü kümesi şöyle bulunur:
$\textrm{Gör}(f)=\{y:\ y=\frac{x+5}{x^2+x-2}\textrm{ olacak şekilde en az bir } x\neq1,-2\textrm{ vardır}\}$
$=\{y:\ yx^2+(y-1)x-(5+2y)=0\textrm{ olacak şekilde en az bir } x\in\mathbb{R}\textrm{ vardır}\}$
$y=0$ denklem 1. derecedir, (kökünün var olup olmadığı kolayca belirlenir).
$y\neq0$ ise denklem ikinci derecedir. Bu durumda ikinci derece denklemlerin gerçel köklerinin varlığı ile ilgili diskrimant kriterini ($\Delta\geq0$) kullanabilirsin.
(Bu yöntemle, payının ve paydasının derecesi en çok 2 olan rasyonel fonksiyonların görüntü kümesi bulunabilir. Her rasyonel fonksiyon için bulunabilmesi için (derecesi çift olan) bir polinomun gerçel kökü olup olmadığının basit bir kriterine gereksinim var.)