$P$ polinomunu $a_n \ne 0$ olmak uzere $$P(x)=a_n x^n+\cdots+a_1x+a_0=\sum_{i=0}^na_ix^i$$ olarak yazalim. Bu durumda $$\Delta \left(\sum_{i=0}^na_ix^i\right)= \sum_{i=0}^na_i(x+1)^i-\sum_{i=0}^na_ix^i=\sum_{i=0}^na_i((x+1)^i-x^i)=\sum_{i=0}^na_i\Delta(x^i)$$olur. Bu sekilde $n$ kere $\Delta$ operatorunu uygularsak $$\Delta^n \left(\sum_{i=0}^na_ix^i\right)=\sum_{i=0}^na_i\Delta^n(x^i)$$ olur.
Sunu ispatlayalim: $k\ge 1$ tam sayisi icin $$\Delta^k(x^k)=k!$$ olur. Dolayisiyla $d>k$ icin $$\Delta^d(x^k)=0$$ olur. Bu da bize $$\Delta^n \left(\sum_{i=0}^na_ix^i\right)=\sum_{i=0}^na_i\Delta^n(x^i)=a_n\cdot n!$$ oldugunu verir ve $n=d$ ve $a_n=a_d=1$ durumunda da istenilen sonuc $$d!$$ olur.
Ispatlayalim kismini okuyucuya birakiyorum. Soru artik kolaylasmis oldu. Tumevarim deniyebilirsiniz. Ayrica bu operatorun turev ile iliskisini de gorebilirsiniz.