İkinci (ya da üçüncü) dereceden bir polinom için indirgenemezlikle kökü olmamak eşdeğerdir.
Eğer karakteristik 3 ise, 1, denklemin bir çözümüdür, dolayısıyla polinom indirgenemez olamaz. Bundan böyle karakteristik 3 olmasın. Dolayısıyla 1 denklemin bir kökü değildir. Bakalım denklemin başka kökü var mı?
$(x^2+x+1)(x-1)=x^3-1$ olduğundan, $x^2+x+1=0 \iff (x^3=1 \wedge x\neq 1)$. Demek ki $x^3=1$ denkleminin 1'den farklı çözümünün olup olmadığına bakmalıyız; bu çözümler (varsa) elbette $\mathbb{F}_p^*$ çarpımsal grubunun derecesi (mertebesi) 3 olan elemanlarıdır. Yani $x^2+x+1=0$ denkleminin $\mathbb{F}_p$ cisminde bir çözümü olması için 3'ün $\mathbb{F}_p^*$ grubunun eleman sayısını yani $p-1$'i bölmesi lazımdır. Bu da bir $k$ için $p=3k+1$ demektir. Diğer durumlarda, yani $p=3k+2$ durumlarında, denklemin çözümü yoktur, dolayısıyla polinom indirgenemezdir.