$0,\overline 9=0,9999 \dots =0,9+0,09+0,009+0,0009+\dots$
$=\dfrac 9 {10}+\dfrac 9 {100}+\dfrac 9 {1000}+\dfrac 9 {10000}+ \dots$
$=\dfrac 9 {10} \left(1+\dfrac1 {10} +\dfrac1 {100}+\dfrac1 {1000}+\dots \right)$
= $\dfrac9 {10} . \dfrac{1-(\dfrac {1}{10})^n} {1-\dfrac {1}{10}} $
= $ \dfrac{9} {10}.\dfrac {1} {\dfrac {9}{10}} =1$