Bir topolojik uzaydaki kapalı kümelerin oluşturduğu aileyi $\mathcal{K}$ ile gösterelim.
1) $\setminus X=\emptyset\in\tau\Rightarrow X\in\mathcal{K}, \mbox{ } \setminus \emptyset=X\in\tau\Rightarrow \emptyset \in\mathcal{K}$
2) $A,B\in\mathcal{K}$ olsun.
$$A,B\in\mathcal{K}$$$$\Rightarrow$$$$\setminus A,\setminus B\in\tau$$$$\Rightarrow$$$$(\setminus A)\cap (\setminus B)\in\tau$$$$\Rightarrow$$$$\setminus (A\cup B)\in\tau$$$$\Rightarrow$$$$A\cup B\in\mathcal{K}.$$
3) $\mathcal{A}\subseteq\mathcal{K}$ olsun.
$$A\in\mathcal{A}\subseteq\mathcal{K}$$$$\Rightarrow$$
$$\left\{\setminus A|A\in\mathcal{A}\right\}\subseteq \tau$$
$$\Rightarrow$$$$\bigcup\{\setminus A|A\in\mathcal{A}\}\in\tau$$$$\Rightarrow$$$$\setminus \left(\bigcap \{A|A\in\mathcal{A}\}\right)\in\tau$$$$\Rightarrow$$$$\setminus\left(\bigcap\mathcal{A}\right)\in\tau$$$$\Rightarrow$$$$\left(\bigcap\mathcal{A}\right)\in\mathcal{K}.$$