$\looparrowright $ Kanıt 2 :
$\frac{1}{n^2}=\Large \displaystyle \int_\limits{0}^{1} \int_\limits{0}^{1} \small x^{n-1}y^{n-1} dxdy $
Monoton yakınsaklık teoreminden şunu elde ederiz;
$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}=\Large \displaystyle \int_\limits{0}^{1} \int_\limits{0}^{1} \lgroup \small \sum\limits_{n=1}^{\infty} (xy)^{n-1} \Large \displaystyle \rgroup \small dxdy $
$= \Large \displaystyle \int_\limits{0}^{1} \int_\limits{0}^{1} \small \frac{dxdy}{1-xy} $
Şimdi ise değişken dönüşümü yapılır ise;
$(u,v)=(\frac{x+y}{2} , \frac{y-x}{2})$
$(x,y)=(u-v,u+v)$ Bundan dolayı ;
$\zeta(2)=2\Large \displaystyle \iint_{S} \small \frac {dudv}{1-u^2-v^2}$
$S$'nin köşeleri $(0,0),(\frac1{2},-\frac1{2}),(1,0),(\frac1{2},\frac1{2})$
$\zeta(2)=4\Large \displaystyle \int_{0}^{\frac1{2}} \int_{0}^{u} \small \frac {dudv}{1-u^2-v^2}+4\Large \displaystyle \int_\limits{\frac1{2}}^{1} \int_\limits{0}^{1-u} \small \frac{dudv}{1-u^2-v^2}$
$=4\Large \displaystyle \int_\limits{0}^{\frac1{2}} \small \frac{1}{\sqrt{1-u^2}}tan^{-1} \lgroup \frac{u}{\sqrt{1-u^2}} \rgroup du + 4\Large \displaystyle \int_\limits{\frac1{2}}^{1} \small \frac{1}{\sqrt{1-u^2}}tan^{-1} \lgroup \frac{1-u}{\sqrt{1-u^2}} \rgroup du $
Şimdi ise $tan^{-1} \lgroup \frac{1-u}{\sqrt{1-u^2}} \rgroup=sin^{-1}u$
Eğer $\Theta = tan^{-1} \lgroup \frac{1-u}{\sqrt{1-u^2}} \rgroup $
Sonra $tan^2 \Theta = \frac{1-u}{1+u}$
$sec^2 \Theta=\frac{2}{1+u}$
Şu şekilde ifade edilir.
$u=2cos^2\Theta - 1= cos2\Theta $ , $\Theta =\frac1{2}cos^{-1}u=\frac{\pi}{4}-\frac{1}{2}sin^{-1}u$
Bundan dolayı ;
$\zeta(2)= \Large \displaystyle 4\int_\limits{0}^{\frac1{2}}\small \frac {sin^{-1}u}{\sqrt{1-u^2}}du+ \Large \displaystyle 4\int_\limits{\frac1{2}}^{1}\small \frac {1}{\sqrt{1-u^2}}du \lgroup \frac{\pi}{4}- \frac{sin^{-1}}{2}du$
$=[ \small 2(sin^{-1}u)^2 ]_{0}^{\frac1{2}}+[\pi sin^{-1}u - (sin^{-1})^2]_\frac1{2}^1$
$=\frac {\pi^2}{18}+\frac{\pi^2}{2}-\frac{\pi^2}{4}-\frac{\pi^2}{8}+\frac{\pi^2}{36}$
$=\frac{\pi^2}{6}.$
$\star$ Bu kanıtın sahibi Tom Mike Apostol