Teoremi formel olarak şöyle yazabiliriz:
Teorem: $\emptyset\neq S\subseteq\mathbb{R}$ olmak üzere
$$(\sup S=s)(s\notin S)\Rightarrow s\in D(S).$$
Not: $D(S):=\{x|x, S\text{'nin yığılma noktası}\}=\{x|(\forall \epsilon>0)(B(x,\epsilon)\cap (S\setminus\{x\})\neq\emptyset)\}$
İspat: $\sup S=s$ ve $s\notin S$ olsun.
$\sup S=s\Rightarrow(\forall\epsilon>0)(\exists s_0\in S)(s-\epsilon<s_0<s<s+\epsilon)$
$\Rightarrow (\forall\epsilon>0)(\exists s_0\in S)(|s-s_0|<\epsilon)$
$\left. \begin{array}{r} \Rightarrow (\forall\epsilon>0)(\exists s_0\in S)(s_0\in B(s,\epsilon)) \\ s\notin S \end{array} \right\}\Rightarrow$
$\Rightarrow (\forall\epsilon>0)(\exists s_0\in S)(s_0\in B(s,\epsilon)\cap (S\setminus\{s\}))$
$\Rightarrow (\forall\epsilon>0)(B(s,\epsilon)\cap (S\setminus\{s\})\neq\emptyset)$
$\Rightarrow s\in D(S).$