$G$ bir grup, $P_1$ ve $P_2$ iki tane Sylow-p-alt grup olsun. Eğer $p \in P_1 \cap P_2$ ve $p \neq e$ ise $P_1$ ile $P_2$ aynı Sylow-p- altgruplar mıdır?
Mesela $|G|=63$ olsun. Sylow teoremini kullanarak $G$'nin 7 tane Sylow-3-alt grubu olduğunu söylüyorum. Bu 7 tane Sylow-3-alt grupları ya çakışıktır ya da kesişimlerinde sadece birim eleman vardır demeye çalışıyorum.