Önce ilk dört kutuya, her kutuda en çok 4 bilye bulunacak şekilde ve son dört kutuya da herbirinde en az 4 bilye bulunacak şekilde dağıtım yapalım ve bunları hesaplayalım.
1) İlk dört kutuda 4 bilye, son dört kutuda 26 bilye için dağıtım sayısı:
$\frac {7!}{4!.3!}$ ve son dört kutunun her birine 4 'er bilye koyalım. Kalan 10 bilyeyi $\frac{13!}{10!.3!}$ şeklinde dağıtalım. Bu durumda dağılım sayısı $ C(8,4). [\frac {7!}{4!.3!} +\frac{13!}{10!.3!}]$ dır.
2)İlk dört kutuda 5 bilye, son dört kutuda 25 bilye için dağıtım sayısı:
$\frac {8!}{5!.3!}-P(4,1)$ ve son dört kutunun her birine 4 'er bilye koyalım. Kalan 9 bilyeyi $\frac{12!}{9!.3!}$ şeklinde dağıtalım. Bu durumda dağılım sayısı $C(8,4).[\frac {8!}{5!.3!}-P(4,1) +\frac{12!}{9!.3!}]$ dır.
3) İlk dört kutuda 6 bilye, son dört kutuda 24 bilye için dağıtım sayısı:
$C(8,4).[\frac{9!}{6!.3!}-[P(4,1)+P(4,2)]+\frac{11!}{8!.3!}]$
4) İlk dört kutuda 7 bilye, son dört kutuda 23 bilye için dağıtım sayısı:
$C(8,4).[\frac{10!}{7!.3!}-[P(4,1)+3.P(4,2)]+\frac{10!}{7!.3!}]$
5)İlk dört kutuda 8 bilye ,son dört kutuda 22 bilye dağılım sayısı:
$C(8,4).[\frac{11!}{8!.3!}-[2.P(4,1)+4.P(4,2)+P(4,3)]+\frac{9!}{6!.3!}]$
6)İlk dört kutuda 9 bilye ,son dört kutuda 21 bilye dağılım sayısı:
$C(8,4).[\frac{12!}{9!.3!}-[2.P(4,1)+7.P(4,2)+2P(4,3)]+\frac{8!}{5!.3!}]$
7)İlk dört kutuda 10 bilye ,son dört kutuda 20 bilye dağılım sayısı:
$C(8,4).[\frac{13!}{10!.3!}-[2.P(4,1)+9.P(4,2)+4P(4,3)+6]+\frac{7!}{4!.3!}]$
8)İlk dört kutuda 11 bilye ,son dört kutuda 19 bilye dağılım sayısı:
$C(8,4).[\frac{13!}{10!.3!}-[2.P(4,1)+9.P(4,2)+4P(4,3)+6]+\frac{7!}{4!.3!}]$
.
.
.
Son durum:
ilk dört kutuda 14 bilye, son dört kutuda 16 bilye dağılım sayısı
$C(8,4) [\frac{4!}{3!}+\frac{4!}{2!.2!}+1]$
istenen dagılım sayısı bulunan bu sayıların toplamı olsa gerek
Epeyce uzun oldu ama daha kısa bir çözümü merakla bekliyorum.