$$\left.\begin{array}{ccc}\mathcal{A}_1\subseteq \mathcal{A}_1\cup\mathcal{A}_2\Rightarrow \cap(\mathcal{A}_1\cup\mathcal{A}_2)\subseteq\cap \mathcal{A}_1 \\ \mathcal{A}_2\subseteq \mathcal{A}_1\cup\mathcal{A}_2\Rightarrow \cap(\mathcal{A}_1\cup\mathcal{A}_2)\subseteq\cap \mathcal{A}_2 \end{array}\right\}\Rightarrow\cap(\mathcal{A}_1\cup\mathcal{A}_2)\subseteq (\cap \mathcal{A}_1)\cap(\cap \mathcal{A}_2)\ldots (1)$$
$$x\in (\cap \mathcal{A}_1)\cap(\cap \mathcal{A}_2)$$
$$\Rightarrow$$
$$(x\in (\cap \mathcal{A}_1))(x\in (\cap \mathcal{A}_1))$$
$$\Rightarrow$$
$$(\forall A_1\in\mathcal{A}_1)(x\in A_1)(\forall A_2\in\mathcal{A}_2)(x\in A_2)$$
$$\Rightarrow$$
$$(\forall A\in\mathcal{A}_1\cup\mathcal{A}_2)(x\in A)$$
$$\Rightarrow$$
$$x\in \cap (\mathcal{A}_1\cup\mathcal{A}_2)\ldots (2)$$
O halde
$$(1),(2)\Rightarrow \cap (\mathcal{A}_1\cup\mathcal{A}_2)=(\cap \mathcal{A}_1)\cap(\cap \mathcal{A}_2)$$
elde edilir.