$\mathcal{B}:=\{\cap\mathcal{A}^*|(\mathcal{A}^*\subseteq\mathcal{A})(|\mathcal{A}^*|<\aleph_0)\}$ olsun.
$\left. \begin{array}{r} A\in\tau_1 \\ \\ \mathcal{A}, \tau_1 \text{ için altbaz}\Rightarrow\mathcal{B}, \tau_1 \text{ için baz} \end{array} \right\}\Rightarrow $
$\begin{array}{c} \left. \begin{array}{r} \Rightarrow (\exists \mathcal{G}\subseteq \mathcal{B}\subseteq\tau_1)(A=\cup\mathcal{G}) \\ \mathcal{A}, \tau_2 \text{ için altbaz}\Rightarrow\mathcal{B}, \tau_2 \text{ için baz} \Rightarrow \mathcal{B}\subseteq\tau_2\\ \tau_2, X\text{'de topoloji} \end{array} \right\} \Rightarrow A\in\tau_2\end{array}$
yani $$\tau_1\subseteq\tau_2$$olur. Benzer şekilde $$\tau_2\subseteq\tau_1$$bulunur. O halde $$\tau_1=\tau_2.$$