$X=\{a,b,c\} \,\ \text{ ve } \,\ \tau=\{\emptyset,X,\{a\},\{b\},\{a,b\}\}$ olmak üzere
$$\mathcal{B}:=\left\{A|A\subseteq \overline{A^{\circ}}\cup\overset{\circ}{\overline{A}} \right\}=2^X\setminus \{\{c\}\}$$ olur. Bu aile ise $X$ kümesi üzerindeki bir topoloji için baz olamaz. Çünkü $$\{a,c\},\{b,c\}\in\mathcal{B}$$ fakat $$\{a,c\}\cap \{b,c\}=\{c\}=\cup\mathcal{A}$$ olacak şekilde $$\mathcal{A}\subseteq\mathcal{B}$$ yoktur.