$$d(x,y):=|\arctan x-\arctan y|$$ kuralı ile verilen $$d:\mathbb{R}^2\to\mathbb{R}$$ fonksiyonu bir metriktir. Dolayısıyla $(\mathbb{R},d)$ ikilisi bir metrik uzaydır. Ancak bu metrik uzay bir tam uzay değildir. Çünkü $(n)_n$ dizisi bu uzayda bir Cauchy dizisi (neden?) olmasına karşın yakınsak değildir. Neden?