1. Aşama:
$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=1+\sum_{k=1}^\infty\dfrac{k^2+2k+1 }{ k!}$$$$=$$$$1+\sum_{k=1}^\infty\dfrac{k }{ (k-1)!}+2\sum_{k=1}^\infty\dfrac{ 1 }{ (k-1)!}+\color{green}{\sum_{k=1}^\infty\dfrac{ 1}{ k!}}$$$$=$$$$\sum_{k=1}^\infty\dfrac{k +1-1 }{ (k-1)!}+2\sum_{k=0}^\infty\dfrac{ 1 }{ k!}+\color{green}{\sum_{k=1}^\infty\dfrac{ 1}{ k!}}$$$$1+\displaystyle\sum_{k=2}^\infty\dfrac1{(k-2)!}+\sum_{k=2}^\infty\dfrac{1}{(k-1)!}+\color{green}{3\sum_{k=0}^\infty\dfrac{ 1}{ k!}}$$$$=$$$$\color{red}{\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=5\sum_{k=0}^\infty\dfrac1{k!}}}}$$
$$-----------------------$$
2. Aşama:
2,a:
$$2\displaystyle\sum_{k=0}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=1}^\infty\dfrac{1}{(k-1)!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$$$Yani\quad \boxed{2\displaystyle\sum_{k=0}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}$$
$$-----------------------$$
2,b:
$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+\displaystyle\sum_{k=0}^\infty\dfrac{2k}{k!}+\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$$$\Longrightarrow$$$$\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+3\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}}$$
$$-----------------------$$
2,c:
$$\boxed{\boxed{e^x=\displaystyle\sum_{k=0}^\infty\dfrac{x^k}{k!}\quad\to\quad e=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}}$$
$$-----------------------$$
Olduğundan;
$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=5\sum_{k=0}^\infty\dfrac1{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+3\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$
$$\to$$$$\color{purple}{\boxed{\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}=2e}}}}$$