Önce ifadede parantezin içindeki $x$'i silelim.Biliyoruz ki moddaki sayıyı istediğimiz gibi ekleyip çıkarabiliyoruz.
$17^{33}=x^{79}(modx)$ oldu.
Hiçbir sayı, $x$ ile bölündüğünde $x^{79}$ kalanını vermez.Çünkü $x^79$'un içinde de $x$ vardır.Bu yüzden kalan kısmına direk $0$ yazabiliriz.
$17^{33}=0(modx)$ oldu.
$17^{33}$ ifadesini asal çarpanlarına ayırmamıza gerek yok çünkü $17$ zaten asaldır. (Eğer ki soru bize atıyorum $20^{33}$ sayısını sorsa bunu da $5^{33}.2^{66}$ diye ayırmak zorundaydık çarpanlarını bulmak için)
$17^{33}$ ifadesinin üssünü bir artırırsak $34$ olur fakat bu $34$ bölenden bir tanesi de $1$ olur.$x$ $1$'e eşit değilse cevabımız $33$ olur.