$(X,\tau)$ topolojik uzay, $x,y\in X$ ve $U,N \subseteq X$ olmak üzere
$x$'in açık komşuluklar ailesi:$$\mathcal{U}(x)=\{U| x\in U\in\tau\}$$ $x$'in komşuluklar ailesi:$$\mathcal{N}(x)=\{N|(\exists U\in\mathcal{U}(x)) (U\subseteq N)\}$$
şeklinde tanımlandığına göre;
" $\mathcal{U}(x)=\mathcal{U}(y)\Rightarrow\mathcal{N}(x)=\mathcal{N}(y)$ " önermesi doğru mudur?
" $\mathcal{N}(x)=\mathcal{N}(y)\Rightarrow\mathcal{U}(x)=\mathcal{U}(y)$ " önermesi doğru mudur?
-
iki önermenin doğru olmadığına dair ters örnek düşündüm fakat bulamadım. Eğer ikisi de doğruysa ispatında işime yarayacak bir ipucu verirseniz veya aksine örnek olabilecek bir ipucu çok yardımcı olmuş olursunuz. Yardımcı olacak hocalarıma şimdiden teşekkürler.